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Abstract

Quasars behind the Galactic plane (GPQs) are important astrometric references and useful probes of Milky Way
gas. However, the search for GPQs is difficult due to large extinctions and high source densities in the Galactic
plane. Existing selection methods for quasars developed using high Galactic latitude (high-b) data cannot be
applied to the Galactic plane directly because the photometric data obtained from high-b regions and the Galactic
plane follow different probability distributions. To alleviate this data set shift problem for quasar candidate
selection, we adopt a transfer-learning framework at both the data and algorithm levels. At the data level, to make a
training set in which a data set shift is modeled, we synthesize quasars and galaxies behind the Galactic plane based
on SDSS sources and the Galactic dust map. At the algorithm level, to reduce the effect of class imbalance, we
transform the three-class classification problem for stars, galaxies, and quasars into two binary classification tasks.
We apply the XGBoost algorithm to Pan-STARRS1 (PS1) and AllWISE photometry for classification and an
additional cut on Gaia proper motion to remove stellar contaminants. We obtain a reliable GPQ candidate catalog
with 160,946 sources located at |b|� 20° in the PS1-AllWISE footprint. Photometric redshifts of GPQ candidates
achieved with the XGBoost regression algorithm show that our selection method can identify quasars in a wide
redshift range (0< z 5). This study extends the systematic searches for quasars to the dense stellar fields and
shows the feasibility of using astronomical knowledge to improve data mining under complex conditions in the
big-data era.

Unified Astronomy Thesaurus concepts: Active galactic nuclei (16); Astrostatistics techniques (1886);
Classification (1907); Catalogs (205); Quasars (1319); Galactic and extragalactic astronomy (563)

Supporting material: FITS file

1. Introduction

The Galactic plane has long been the “zone of avoidance”
for extragalactic astronomy, including quasar surveys. The Half
Million Quasar (Flesch 2015) catalog contains a total of
510,764 objects but only 35,105 located at b� |30°| (half of
the whole sky area), 3730 at b� |20°|, and 255 at b� |10°|.
Although it is difficult to search for quasars behind the Galactic
plane (GPQs), such quasars are important references for
astrometry and useful probes of Milky Way gas.

Quasars are used as astrometric references due to their small
parallaxes and proper motions. The GPQs enable the accurate
measurement of positions, distances, and proper motions of
stars in the Galactic disk, which is key to understanding our
own Galaxy. The high-precision astrometry provided by the
Gaia mission defines a celestial reference frame through the
positions of 556,869 candidate quasars; however, only a tiny
fraction of these quasars are located at |b|� 15° (Gaia
Collaboration et al. 2018b). A large sample of GPQs will help
build a better reference frame in the optical through direct
coverage of the sky in the Galactic plane and reach a better
understanding of the systematic astrometry errors of Gaia in the
Galactic plane region (Arenou et al. 2018).

Line-of-sight absorption toward quasars can probe the gas
structures of the Milky Way. While quasars at high Galactic
latitude have been useful in studying the Milky Way halo gas
(e.g., Savage et al. 1993, 2000; Ben Bekhti et al. 2008, 2012),
GPQs allow absorption line studies on gaseous structures in the

Galactic plane (e.g., anticenter shell, H complex; see
Westmeier 2018). Moreover, a high-density sample of GPQs
can map the gas distribution with a higher angular resolution
than is possible with the 21 cm surveys.
Another application of GPQs is adaptive optics observation

of quasar host galaxies, which is achieved by their proximity to
nearby bright stars as natural guide stars (Im et al. 2007;
Fischer et al. 2019). For adaptive optics, natural guide stars
should be located within a few arcseconds of the science target,
which rarely occurs outside of the Galactic plane but is more
common in the plane.
The difficulty of finding GPQs is caused by several

challenges, including the following.

1. In comparison to objects at high Galactic latitude (high-
b), sources in the Galactic plane suffer from higher
extinction and reddening. As a result, many sources
(especially extragalactic sources) cannot be detected
within the survey detection limit. For other detectable
sources, their colors are different from those at high
Galactic latitude.

2. The source density in the Galactic plane is high. The
quality of photometry can be worse in dense regions,
because sources can be easily contaminated by visible or
unseen neighbors.

3. A lot of “unusual” stars are located within the Galactic
plane, including some white dwarfs, M/L/T dwarfs, and
young stellar objects (YSOs), that share many similar
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observational properties with quasars. These sources can
be contaminants for quasars at different redshifts (e.g.,
Kirkpatrick et al. 1997; Vennes et al. 2002; Chiu et al.
2006; Kozłowski & Kochanek 2009).

Since the first identification of a quasar (3C 273;
Schmidt 1963), many methods for quasar candidate selection
have been developed, including ultraviolet excess (e.g.,
Sandage 1965; Green et al. 1986), radio sources (e.g., Gregg
et al. 1996; White et al. 2000; Becker et al. 2001), X-ray
sources (e.g., Pounds 1979; Grazian et al. 2000), optical/near-
infrared (near-IR) colors (e.g., Fan et al. 2001; Richards et al.
2002; Wu & Jia 2010), mid-IR colors (e.g., Lacy et al. 2004;
Stern et al. 2005, 2012; Mateos et al. 2012; Wu et al. 2012; Yan
et al. 2013), and quasar variability (e.g., Dobrzycki et al. 2003;
Palanque-Delabrouille et al. 2011). In addition, tools based on
statistical machine learning (e.g., Richards et al. 2004; Bovy
et al. 2011) and deep learning (e.g., Yèche et al. 2010; Pasquet-
Itam & Pasquet 2018) have also been established to find
quasars with various data that are available.

A few studies have focused on finding quasars/active
galactic nuclei (AGNs) behind dense stellar fields such as the
Galactic plane, Magellanic Clouds, and M31 and M33 galaxies.
Most of these studies used infrared selection methods to
efficiently find quasars. For example, Im et al. (2007)
discovered 40 bright quasars at |b|� 20° by applying the
combination of a near-IR color cut of J− K> 1.4 on the Two
Micron All Sky Survey (2MASS; Skrutskie et al. 2006) and
detection of a radio counterpart from the NRAO VLA Sky
Survey (Condon et al. 1998). Kozłowski & Kochanek (2009)
identified 5000 AGNs behind the Magellanic Clouds with mid-
IR color cuts modified from the method of Stern et al. (2005).
Huo et al. (2010, 2013, 2015) discovered 1870 new quasars
around the Andromeda (M31) and Triangulum (M33) galaxies
with the Large Sky Area Multi-Object Fiber Spectroscopic
Telescope (LAMOST) from 2009 to 2013.

Recently, searches for quasars have been focused on large
data sets with big data volumes and large sky coverage. Secrest
et al. (2015) obtained an all-sky AGN candidate catalog with
∼1.4 million sources using two-color infrared photometric
selection criteria from the Wide-field Infrared Survey Explorer
final catalog release (AllWISE; Wright et al. 2010; Mainzer
et al. 2011). Assef et al. (2018) built two catalogs of AGN
candidates that were also based on AllWISE photometry while
excluding regions around the Galactic center and Galactic plane.
Jin et al. (2019) selected quasar candidates with the machine-
learning method using Pan-STARRS1 (PS1; Chambers et al.
2016) and AllWISE data. Bailer-Jones et al. (2019) classified
objects in the Gaia Data Release 2 (Gaia DR2; Gaia Collaboration
et al. 2018a, 2016) as stars, quasars, and galaxies with a Gaussian
mixture model and addressed the problem of class imbalance in
Gaia DR2.

However, the studies listed above either treated sources in
the Galactic plane and high Galactic latitude as the same or
removed the Galactic plane from consideration. Selection
methods for quasars at high Galactic latitude are not generic
and cannot be applied to the Galactic plane directly because
data (e.g., PS1 and AllWISE photometry) obtained from high-
and low-b follow different probability distributions. For
example, the apparent colors of quasars (stars) vary from high-
to low-b regions, and so does the source density of quasars
(stars). Such behavior of the data is a kind of nonstationarity
called data set shift (Quionero-Candela et al. 2009), which

leads to a significant estimation bias of supervised machine-
learning algorithms. The color cuts for quasar selection can also
be regarded as simple decision tree models in a machine-
learning regime. Previous color cuts obtained from high
Galactic latitude regions fail in the Galactic plane due to the
data set shift.
To deal with these data set shift problems, transfer learning

(Pan & Yang 2009) has been proposed and studied extensively
by data scientists. The idea of transfer learning is to use
knowledge gained in one problem and apply it to a different but
related problem. Although spectroscopically identified (i.e.,
“labeled”) samples of extragalactic objects are inadequate in
the Galactic plane, such labeled samples are available at high
Galactic latitude. The labeled data make it possible to build a
good selection method for GPQs once the knowledge transfer
from high Galactic latitude to low Galactic latitude is
successful.
This paper is the first of a series for finding GPQs. In this

paper, we present a transfer-learning method for quasar
selection, as well as a GPQ candidate catalog with 160,946
sources. In Section 2, we introduce the archival data used for
this study. In Section 3, we describe the algorithm design for
GPQ selection. In Section 4, we synthesize quasars and
galaxies behind the Galactic plane with extragalactic objects at
high Galactic latitude from the Sloan Digital Sky Survey
(SDSS; York et al. 2000) to make a training set in which the
data set shift is modeled. In Section 5, we transform the three-
class classification problem for stars, galaxies, and quasars to
two binary classification tasks, stars versus extragalactic
objects and quasars versus galaxies, to reduce the class
imbalance and class-balance change. In Section 6, we calculate
the photometric redshifts for GPQ candidates. In Section 7, we
present the GPQ candidate catalog and some statistical
properties of the sample. We summarize the results in
Section 8. Throughout this paper, we use AB magnitude for
PS1 photometry and Vega magnitude for AllWISE photometry
unless otherwise mentioned.

2. Data

We make use of optical and infrared photometric data from
PS1 and AllWISE and astrometric data from Gaia DR2. We
also retrieve samples of spectroscopically identified objects
from SDSS and LAMOST.

2.1. PS1 DR1 Photometry

A set of synoptic imaging sky surveys was carried out by
PS1 (Chambers et al. 2016), including the 3π Steradian Survey
and the Medium Deep Survey in five bands (grizyP1). The
mean 5σ point-source limiting sensitivities in the stacked 3π
Steradian Survey in (grizyP1) are (23.3, 23.2, 23.1, 22.3, 21.4),
and the single-epoch 5σ depths in (grizyP1) are (22.0, 21.8,
21.5, 20.9, 19.7). For better astrometry in the crowded Galactic
plane field, we use mean coordinates from the PS1 MeanObject
table. Mean point-spread function (PSF) magnitudes are used
for all bands (grizyP1), and mean Kron magnitudes (Kron 1980)
are used for the iP1 and zP1 bands. The Galactic extinction
coefficients for (grizyP1) are Rg, Rr, Ri, Rz, Ry= 3.5805, 2.6133,
1.9468, 1.5097, 1.2245. These coefficients are calculated using
Rλ= Aλ/AV× RV, where Aλ/AV is the relative extinction value
for band λ given by a new optical to mid-IR extinction law
(Wang & Chen 2019), and RV= 3.1.
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We set a few constraints on the PS1 data to ensure data
quality. All sources should be (i) detected in all PS1 bands
(grizyP1> 0) and significantly detected in iP1 (error in PSF
mag of iP1 band i_err< 0.2171, equivalent to iP1-band signal-
to-noise ratio (S/N) larger than 5), (ii) not too bright in
iP1 to avoid possible saturation (i> 14), and (iii) measured
with Kron magnitude (Kron 1980) in the iP1 and zP1 bands
(iKron> 0 and zKron> 0). For simplification, we use (g, r, i, z, y)
to represent the PSF magnitudes of the PS1 bands (grizyP1) in
color indexes (e.g., g− r, g−W1) and derived quantities
i− iKron and z− zKron. The zP1 PSF magnitude does not appear
alone and will not be confused with the redshift symbol z.

2.2. AllWISE Photometry for Pointlike Sources

The AllWISE catalog is built upon the work of the Wide-
field Infrared Survey Explorer (WISE) mission (Wright et al.
2010) by combining data from the WISE cryogenic and
NEOWISE (Mainzer et al. 2011) postcryogenic surveys. WISE
has four bands at 3.4, 4.6, 12, and 22 μm (W1, W2, W3, and
W4). The 5σ limiting magnitudes of the AllWISE catalog in the
W1, W2, W3, and W4 bands are 19.6, 19.3, 16.7, and 14.6
mag. The Galactic extinction coefficients for W1, W2, and W3
used in this study are RW1, RW2, RW3= 0.1209, 0.0806, 0.124.
These coefficients are also calculated with relative extinction
Aλ/AV values from Wang & Chen (2019).

We cross-match the PS1 sources with AllWISE using a
radius of 1″ to avoid source confusion in the dense fields of the
Galactic plane. We also set a few constraints on the AllWISE
data. All sources should be (i) AllWISE point sources
(ext_flg= 0), (ii) not too bright to avoid possible saturation
(W1> 8 andW2> 7), (iii) significantly detected in the W1 and
W2 bands (W1snr> 5 andW2snr> 5, where W1snr/W2snr
means the S/N in the W1/W2 band), (iv) unaffected by
prioritized image artifacts in each band (cc_flags= “0000”),
and (v) unblended with nearby detections so that only one
component is used in each profile fitting for each
source (nb = 1).

2.3. Gaia DR2 Astrometry

Gaia DR2 (Gaia Collaboration et al. 2018a, 2016) contains
celestial positions and the apparent brightness in the G band for
approximately 1.7 billion sources. For 1.3 billion of those
sources, parallaxes and proper motions are available. Broad-
band photometry in the GBP (330–680 nm) and GRP

(630–1050 nm) bands are available for 1.4 billion sources.
We use the proper motions and their uncertainties from the
Gaia DR2 catalog (columns pmra, pmra_error, pmdec,
and pmdec_error) to find quasars.

2.4. SDSS Quasar Catalog: The 14th Data Release

The SDSS (York et al. 2000) has mapped the high Galactic
latitude northern sky and obtained imaging as well as
spectroscopy data for millions of objects, including stars,
galaxies, and quasars. The 14th data release of the SDSS
Quasar Catalog (SDSS DR14Q; Pâris et al. 2018) contains
526,356 quasars. We cross-match the DR14Q catalog with PS1
and AllWISE, both with a radius of 1″. To ensure the data
quality, we use the same constraints in Sections 2.1 and 2.2 to
retrieve a subset of DR14Q. This subset has 289,271 sources
and is denoted as GoodQSO hereafter. As can be seen from the
HEALPix (Górski et al. 2005) density map of GoodQSO

(Figure 1), very few sources of GoodQSO are located at
|b|� 20°.

2.5. SDSS Spectroscopically Identified Stars and Galaxies

In order to compare the high-b sources with the Galactic
plane sources that we use, samples of stars and galaxies are
extracted from the SpecPhotoAll table of SDSS Data Release
15 (Blanton et al. 2017; Aguado et al. 2019). We cross-match
both the star and galaxy samples with PS1 and AllWISE with a
radius of 1″. The SDSS star sample has 23,693 sources. We
also apply quality constraints in Sections 2.1 and 2.2 to select
galaxy subsets with good photometry for later use. The
resulting subset of galaxies (denoted as GoodGal hereafter)
has 1,635,053 sources. Most SDSS stars and galaxies are
located at high Galactic latitude (|b|> 20°).

2.6. Stars from LAMOST General Catalog

LAMOST, also called the Guoshoujing Telescope, is a
special reflecting Schmidt telescope, the design of which
allows both a large effective aperture of 3.6–4.9 m and a wide
field of view of 5° (Wang et al. 1996; Su & Cui 2004; Cui et al.
2012). The LAMOST spectral survey (Luo et al. 2012, 2015;
Zhao et al. 2012) consists of two major components, i.e., the
LAMOST Experiment for Galactic Understanding and
Exploration (LEGUE; Deng et al. 2012) and the LAMOST
ExtraGAlactic Survey (LEGAS). The LEGUE observes
stars in different sky regions with different magnitude ranges,
including the Galactic halo with r< 16.8 mag at |b|> 30°,
the Galactic anticenter with 14.0 mag< r< 17.8 mag at
150°� l� 210° and |b|< 30° (Yuan et al. 2015), and the
Galactic disk with r 16 mag at |b|� 20° with uniform
coverage along the Galactic longitude. The LEGAS mainly
identifies galaxies and quasars that are within the SDSS
footprint but complementary to the SDSS spectroscopic
samples (e.g., Shen et al. 2016; Yao et al. 2019). Nevertheless,
extragalactic objects in the LEGUE plates are also targets of the
LEGAS. The LAMOST spectral survey has obtained the
largest stellar spectra sample to date. We retrieve a star sample
from the LAMOST general catalog from DR1 to DR7v0. A
total of 3,940,076 LAMOST stars meet the same constraints in
Sections 2.1 and 2.2. From this LAMOST star sample, we
select 1,334,577 Galactic plane stars with |b|� 20° (denoted as
TStar hereafter). Most TStar sources are from the LEGUE survey
and are brighter than 18 mag in the iP1 band.

2.7. The Million Quasars (Milliquas) Catalog

The Million Quasars (Milliquas) Catalog (Flesch 2019) is a
compilation of quasars and quasar candidates from the
literature. The Milliquas v6.4c update includes 758,908 type
I QSOs and AGNs up to 2019 December 31. We use this
catalog to extract an extant GPQ sample within the PS1
footprint. There are 4344 quasars located at |b|� 20°, which
are labeled as “Q” in Milliquas v6.4c. Cross-matching these
4344 known GPQs with PS1 and AllWISE, both with a radius
of 1″, gives 2757 sources. After applying the same constraints
as in Sections 2.1 and 2.2, we get a subset of 1853 sources.
This Galactic plane subset of Milliquas quasars, denoted as
MLQSUB, will be used later for candidate validation.
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3. Design of the Transfer-learning Framework

3.1. Data Set Shift Problem in the Galactic Plane

The task of quasar selection can be described by classifica-
tion problems in machine learning. Here we look into the three-
class classification for stars, galaxies, and quasars with
photometric data. The learning process requires two indepen-
dent data sets for model training and validation. Training and
validation sets can be two nonoverlapping subsets from a
common parent sample with both features (colors and/or
magnitudes) and class labels (star, galaxy, and quasar).
Usually, the class labels are given by spectroscopic identifica-
tions. The classification algorithm learns a mapping relation
from features to class labels with the training set. Often, the
trained classification model (classifier) is applied to another
data set without class labels (i.e., no spectroscopic identifica-
tions), which is called the application set or test set. The
classifier takes features from the test set as inputs X (aka
covariates) and gives class labels as outputs Y.

A basic assumption for traditional machine learning is that
training and test data follow the same probability distribution
(Bishop 2006; Hastie et al. 2009; Vapnik 2013). However, this
assumption no longer holds if we use high-b data for model
training and low-b data for application because the joint
distribution of inputs and outputs P(X, Y) differs between
training and test data (i.e., data set shift; Quionero-Candela
et al. 2009).

For our GPQ selections, the data set shift includes changes in
both source colors and prior probabilities of different classes.
Sources in the Galactic plane become fainter and redder than
those at high Galactic latitude due to greater reddening, which
changes the distribution of input features and the conditional
probability of the output labels given the inputs P(Y|X) (i.e.,
covariate shift; Shimodaira 2000; Sugiyama & Kawanabe
2012). The prior probabilities of stars are much higher than

those of quasars (and galaxies) in the Galactic plane, which
means the marginal probability P(Y) differs from that at high
Galactic latitude (i.e., class-balance change; Saerens et al.
2002; Du Plessis & Sugiyama 2014). Moreover, the class ratio
between extragalactic objects and stars may vary significantly
from one place to another in the Galactic plane, which we refer
to as an “internal” class-balance change of the test data.
Transfer learning can be applied to improve the learning

performance under a data set shift from a source domain to the
target domain (see a review in Pan & Yang 2009), where
domain is a set  that consists of a feature space  and a
marginal probability distribution P(X), { ( )}=  P X, . For
our classification task, the source domain data are from high
Galactic latitude (|b|> 20°), and the target domain data are
from the Galactic plane (|b|� 20°). In this study, we only care
about areas at δ> −30° due to the limits of PS1 survey
coverage. Comparisons of some properties of the source and
target domains are listed in Table 1.
As large numbers of stars, quasars, and galaxies have been

spectroscopically identified at |b|> 20°, labels for these three
classes are available in the source domain. Since spectro-
scopically identified samples of quasars and galaxies are
significantly lacking at |b|� 20°, labels for these two classes
are unavailable in the target domain. Nevertheless, the labels of
many stars in the target domain are available with the help of
the LAMOST spectroscopic survey.
According to the classification scheme for different settings

of transfer learning by Pan & Yang (2009), the setup of
classification in the Galactic plane can be categorized into
transductive transfer learning, where source domain labels are
available and target domain labels are unavailable. A popular
approach to transductive transfer learning is feature-based
transfer (e.g., Argyriou et al. 2006; Blitzer et al. 2006), which
reduces the difference between the source and target domain
through feature transformation in either one or both of the
domains.
To solve the data set shift problem of classification in the

Galactic plane, we borrow the idea of feature-based transfer
learning. Using the mapping relation between the features of
high-b and low-b objects, we can generate mock samples of
quasars and galaxies in the Galactic plane to simulate the
covariate change of their colors and magnitudes. The
LAMOST Galactic plane stars also contribute to a more
accurate probability distribution of data in the target domain.
To reduce the effect of class-balance change, we manually go
through two binary classification steps rather than running a
three-class classification algorithm only once.

3.2. Modeling Covariate Change with Mock Samples

As the data of the LAMOST Galactic plane stars are
available, we only focus on reducing the differences in features
of extragalactic objects between training and test data. For our
classification problem, all features will be constructed with
photometric data from PS1 and AllWISE. We assume that the
differences in photometric properties between extragalactic

Figure 1. HEALPix density map of GoodQSO sources from SDSS DR14Q (in
Galactic coordinate system) with a median density of 20.3 deg−2. The
HEALPix parameter Nside = 64, and the sky area per pixel is 0.839 deg2.

Table 1
Comparison of the Two Domains of Learning

Domains of Learning Location Labels of Stars Labels of Quasars/Galaxies Internal Class-balance Change

Source domain |b| > 20° Available Available Moderate
Target domain |b| � 20° Available Unavailable Severe
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objects in the Galactic plane and those off the plane are only
caused by different extinctions/reddening along their sight
lines. In this way, we can simply generate mock extragalactic
objects behind the Galactic plane with data obtained at high
Galactic latitude using the mapping relation determined by the
Galactic extinction law and dust map.

The covariate change can then be shown as a color change of
the extragalactic objects on a set of color–color diagrams. Our
classification will perform better by adding mock samples of
quasars and galaxies behind the Galactic plane into the
training set.

3.3. Dealing with Class Imbalance and Class-balance Change
in Machine Learning

With the data-level improvements above, the covariate
change can be reduced. Efforts on the algorithm level are
required to handle the class imbalance and class-balance
change. During the GPQ selections, instead of performing a
star–quasar binary classification, we additionally take galaxies
into account and perform a three-class classification.

Many machine-learning software packages support multi-
class classification jobs by transforming the task into multiple
binary classification problems. However, the built-in treatment
is often inflexible and sometimes destructive when dealing with
class-imbalance problems. For example, in the scenario of
using a one-versus-rest (also known as one-versus-all) strategy
for multiclass classification, at some stages, samples of one
class are regarded as the positive samples, while all samples of
other classes are regarded as negative samples. Even if all of
the classes in the training set have a same sample size, the
binary classification situation is imbalanced, as the positive
class (the “one”) has less samples than the negative class (the
“rest”). In our case, the GPQ set (in both training and test set)
has significantly fewer samples than the sets of galaxies and
stars; thus, severe class imbalance will happen.

To reduce the disadvantage of the one-versus-rest strategy,
which is commonly used in machine-learning algorithms, we
manually convert this three-class classification problem into
two binary classification problems. In the first step, the Galactic
plane sources are classified into two classes: stars and
extragalactic objects. Extragalactic objects are then classified
into quasars and galaxies in the second step. By combining the
two minority classes of quasar and galaxy into one, we would
expect the class imbalance to be better controlled in the first
step. The physical basis for merging the quasar and galaxy
classes is that quasars are a special type of galaxy. For the
second step, we expect the quasar-to-galaxy ratio to be nearly
constant across different locations in the Galactic plane. Thus,
the variable quasar-to-star or galaxy-to-star ratio is avoided,
and the internal class-balance change is lessened in the learning
process.

4. Mock Catalogs for Quasars and Galaxies behind the
Galactic Plane

In order to construct training samples for extragalactic
objects, as well as understand their covariate shift from high
Galactic latitude to the Galactic plane, we synthesize quasars
and galaxies behind the Galactic plane using GoodQSO and
GoodGal samples. The synthesis is plausible if we assume the
distribution of quasars on the celestial sphere is homogeneous
and isotropic on a large scale, just as the cosmological principle

has suggested. We not only observe the changes in colors of
quasars and galaxies as they are placed in low Galactic latitudes
in this modeling process, but we also get a rough estimation on
the sky distributions of the sources that could be detected by a
certain sky survey.

4.1. Synthesizing Procedures

Let E be a set of extragalactic objects (E can be GoodQSO or
GoodGal). The synthesis process consists of the following
steps.

1. Correcting for extinctions. Extinctions of objects in set E
are corrected according to a two-dimensional dust map
provided by Planck Collaboration et al. (2014,
hereafter Planck14) and the optical to mid-IR extinction
law from Wang & Chen (2019) with RV= 3.1. The
E(B− V ) values are retrieved using a Python module,
dustmaps (Green 2018).

2. Assigning new locations. We generate a random sample
of points that are uniformly distributed on the sky with
|b|� 20°. The number of these random points is equal to
the sample size of E. The coordinates of these points are
randomly assigned to objects of E as their new locations.
Now we get a new set, Em (MockGPQ, MockGal),
without line-of-sight extinctions.

3. Adding new extinctions. We add extinctions to the Em

sample using the Planck14 dust map based on their new
(mock) locations.

4. Setting limiting magnitudes. We obtain a subset of Em by
choosing sources brighter than the PS1 single-epoch 5σ
depths in all PS1 passbands: (grizyP1)< (22.0, 21.8, 21.5,
20.9, 19.7). This subset, denoted as Egm (Good-
MockGPQ, GoodMockGal), represents a “good” mock
sample that can be detected by the PS1 survey in all
bands. However, we do not apply similar constraints to
the AllWISE bands, as the magnitude that corresponds to
a 5σ sensitivity varies with location. Also, this extinction
selection effect relies more on the optical survey depth
than the IR survey depth. Factors such as observation
strategies and source confusions in dense fields are not
taken into consideration in this step. Therefore, we may
overestimate the detection rate of GPQs (and galaxies)
through this synthesis. We select sources within the PS1
footprint (i.e., δ� −30°) and obtain the set Egm‐PS1
(GoodMockGPQ-PS1, GoodMockGal-PS1).

5. Constructing training sets with mock and real data. For
mock quasars that are not included in GoodMockGPQ-
PS1, their original counterparts (high-b quasars in the
input set GoodQSO; denoted as CQSO) are also added to
the training and validation sets along with Good-
MockGPQ-PS1. For mock galaxies that are not included
in GoodMockGal-PS1, 25% of their original counterparts
(high-b galaxies in the input set GoodGal; denoted as
CGal) are added to the training and validation sets. The
resulting quasar and galaxy samples for training and
validation are denoted as TQSO and TGal, respectively;
TQSO, TGal, and the LAMOST Galactic plane star sample
TStar form the training and validation sets for machine-
learning classification.

By adding good mock samples and real data (CQSO and CGal)
together instead of using only good mock samples as training
data for quasars or galaxies, we increase the data diversity, as

5

The Astrophysical Journal Supplement Series, 254:6 (20pp), 2021 May Fu et al.



well as the sample size of the training set. This data
diversification ensures that the training set can provide more
discriminative information for the machine-learning model
(Gong et al. 2019). In addition, more training data can help
reduce overfitting.

The flowchart of the synthesizing procedures is displayed in
Figure 2.

In the synthesizing process, we adopt the Planck14 dust map
because it detects dust at a greater depth and better estimates
the two-dimensional extinctions in the Galactic plane than do
the dust maps constructed with stellar photometry (e.g., Green
et al. 2018, 2019). We assume a uniform RV= 3.1, although RV

varies slightly in the Galaxy with a dispersion of about 0.18
(Schlafly et al. 2016). Such minor variations in RV can lead to
small uncertainties of magnitudes and colors of individual
mock quasars (galaxies) but have limited impacts on the
statistical properties of the training sample because mock
sources with large extinctions (and thus large uncertainties
caused by RV variations) are removed by the magnitude limits,
as we shall see in Section 4.2.

4.2. Synthesizing Results and Data Set Shift

We define the extinction-based selection rate in the Galactic
plane as R= |Egm|/|E|, where |E| is the cardinality, i.e., number
of elements/sources of set E. The source numbers of the
input samples are |GoodQSO|= 289,271 and |GoodGal|=
1,635,053; the source numbers of the output samples are
|GoodMockGPQ|= 101,482 and |GoodMockGal|= 771,392.

Therefore, the selection rates for GPQs and galaxies are
RGPQ= |GoodMockGPQ|/|GoodQSO|= 0.35 and RGal=
|GoodMockGal|/|GoodGal|= 0.47, respectively. The selection
rate of galaxies is higher than that of GPQs because the input
galaxies are, on average, brighter than the input quasars. With
step 2 in Section 4.1, the sources of MockGPQ and MockGal
are randomly and evenly distributed in the Galactic plane
(|b|< 20°). But after step 4, the densities of remaining sources
(GoodMockGPQ and GoodMockGal) are inversely related to
the dust map (Figure 3); more extragalactic sources remain
detectable in regions with smaller E(B− V ), and voids of
detection are present at regions with large E(B− V ). A sky
survey deeper than PS1 might help make up some fraction of the
gap in the middle of the Galactic plane. The GoodMockGPQ
sample is sparser compared to GoodMockGal, simply because
there are fewer input quasars than galaxies. Most sources of
GoodMockGPQ and GoodMockGal have a line-of-sight color
excess of E(B− V )< 1.5, which corresponds to an extinction of
AV< 4.65 with RV= 3.1. The medians of the line-of-sight
E(B− V ) of GoodMockGPQ-PS1 and GoodQSO are 0.21 and
0.03, respectively. In general, the GoodMockGPQ-PS1 sample
has a significantly larger E(B− V ) compared to GoodQSO (see
Figure 4(a)). Therefore, the covariate change for color indexes
from high-b to low-b regions cannot be ignored. In addition,
GoodMockGPQ-PS1 sources are fainter than GoodQSO sources
(Figure 4(b)).
A series of color–color diagrams for GoodQSO and

GoodMockGPQ-PS1, along with SDSS stars and Galactic
plane point sources, are shown in Figures 5 and 6. In Figure 5,
from the left to the middle panels, the covariate change of
colors of quasars from high Galactic latitude to the Galactic
plane can be directly observed. The Galactic reddening makes
the cluster of GPQs in a color–color plane extend toward redder
colors (to the upper right along the reddening vector) and
scatter more than high-b quasars. The scattering is greater in
color indexes of bluer bands and less at redder bands. This
trend is also observable in the quasar evolutionary tracks with
E(B− V )= 0, 0.75, and 1.5. From the top to the bottom panels
in Figure 5, the distance between two quasar evolutionary
tracks with different reddening decreases.
The covariate change of stellar colors is also evident from

the color–color diagrams. The stellar loci are simple and clear
for high-b (SDSS) stars (see Figures 5(1a)–(3a)). However,
additional spikes along the direction of increasing E(B− V )
appear in the stellar loci of Galactic plane stars due to
reddening, as can be seen from Figures 5(1b), (1c), (2b), and
(2c). Therefore, we expect to better distinguish stars from other
sources using Galactic plane stars from LAMOST instead of
high-b SDSS stars in the training set.
Since the mid-IR bands are less sensitive to extinction and

reddening, the covariate change of AllWISE colors is less
obvious than that of PS1 colors. For instance, in Figure 6(a),
the quasar evolutionary tracks with E(B− V )= 0, 0.75, and 1.5
stay very close to each other. Since the AllWISE colors of
quasars do not change much from high Galactic latitude to the
Galactic plane, we can use the W1−W2 versus W2−W3
color–color diagram to examine the purity of the final quasar
candidates by comparing the probability distributions of the
candidates and GoodMockGPQ-PS1 sources.
The AllWISE color–color diagram also gives “hardness”

information on the classification problem that separating
quasars from galaxies is harder than separating quasars from

Figure 2. Flowchart of synthesizing procedures for the mock catalogs.
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stars. In general, quasars have redder W1−W2 and W2−W3
colors than stars and galaxies due to the power-law spectral
energy distributions (SEDs) and hot dust of quasars. From
Figure 6(b), we can recognize the stellar locus (W1−W2≈ 0;
lower left) and galaxy locus (W1−W2≈ 0.5, W2−W3≈ 3.5;
middle right) from the density plot. The quasar reference contour
line marks a “quasar region” where most quasars are located in
the W1−W2 versus W2−W3 diagram. Most stars are away
from the quasar region, while a large number of galaxies enter
the quasar region, indicating that such galaxies can contaminate
the mid-IR quasar selection.

Some comparisons between mock quasars (GoodMockGPQ-
PS1) and mock galaxies (GoodMockGal-PS1) behind the
Galactic plane are also shown in Figure 7. In the color–color
diagrams of PS1 bands, galaxies largely overlap with quasars
(Figures 7(a)–(c)), while on the W1−W2 versus W2−W3
plane, these two classes are slightly more separable (Figure 7(d)).
Except for the colors, the difference between PSF magnitude
and Kron (1980) magnitude is often used as a morphological
separator (Strauss et al. 2002; Farrow et al. 2014) for galaxies

and point sources including quasars. However, separating
quasars from galaxies becomes harder with iPSF− iKron at the
faint end (Figure 7(e)), as has been pointed out by Yang et al.
(2017). Among all ∼1.6 million GoodGal sources, ∼200 are
point sources with iPSF< 18 and iPSF− iKron< 0, which can also
been seen from Figure 7(e). These point sources include few
quasars with “galaxy” labels and may also include some stars
that are misclassified as galaxies. We do not pay attention to
these point sources because they only contribute to a tiny fraction
of the whole galaxy sample.
To sum up, we examine the properties of GoodMockGPQ,

GoodMockGal, and PS1-AllWISE pointlike sources in the
color–color spaces. For quasar candidate selection, contam-
ination from both stars and galaxies should be taken care of.
Simple PS1 color cuts are only capable of selecting quasars
that are away from the stellar loci. Using a series of PS1
colors in high-dimensional space might help reduce the
overlap between the stellar loci and clusters of the quasar and
galaxy. Moreover, with AllWISE colors, quasars can be better
separated from stars and galaxies. Therefore, we expect that

Figure 4. Histograms of (a) line-of-sight E(B − V ) and (b) iP1-band magnitudes of GoodMockGPQ-PS1 and GoodQSO. The iP1-band magnitudes are not corrected
for extinction.

Figure 3. Dust extinction map along the Galactic plane retrieved from Planck14 (top panel) and the sky density of GoodMockGPQ (middle panel) and GoodMockGal
(bottom panel).
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the combination of PS1 and AllWISE data will make quasar
selection more efficient.

4.3. A Rough Estimation of the Lower Limit to the Sky Density
of GPQs

An estimation of the sky density of GPQs will be useful for
evaluating the final GPQ candidate sample and the selection
method. However, the GoodMockGPQ sky distribution in the
middle panel of Figure 3 does not reflect the true density of
GPQs for two reasons: (i) the synthesizing process does not
consider the source crowdedness and its effects on the

photometric data quality, and (ii) the source number of
GoodMockGPQ only depends on the size of the input
GoodQSO sample when the dust extinction map is fixed.
Let the density of GoodMockGPQ be Dold, then the relative

density of quasars with good photometry across the Galactic
plane is

( )¢ = ´D D
D

D
, 1new old

goodph

all

where Dall is the sky density of all PS1-AllWISE sources in the
Galactic plane, and Dgoodph is the sky density of sources with

Figure 5. Color–color diagrams of (1a)–(3a) reddening-corrected GoodQSO (color-coded dots) and SDSS stars (black dots), (1b)–(3b) GoodMockGPQ-PS1 (color-
coded dots) and a random sample of PS1-AllWISE point sources (black dots) in the Galactic plane (|b| � 20°), and (1c)–(3c) the same sample of PS1-AllWISE point
sources in the Galactic plane. For panels (1a)–(3a), quasar evolutionary tracks from redshift zero to 4 without Galactic reddening (E(B − V ) = 0) are shown in red. For
panels (1b)–(3b), quasar evolutionary tracks from redshift zero to 4 with E(B − V ) = 0, 0.75, and 1.5 are displayed. The black arrows (reddening vectors) indicate the
evolution directions of the source colors with increasing E(B − V ). Yellow crosses denote points on the quasar evolutionary tracks without Galactic reddening with
z = 0, 1, 2, 3, and 4 in panels (1b) and (2b) and z = 0, 1, and 1.5 in panel (3b). The quasar evolutionary tracks are calculated using the optical composite quasar
spectrum from Vanden Berk et al. (2001) and the near-IR composite quasar spectrum from Glikman et al. (2006).
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good photometry, as defined in Sections 2.1 and 2.2. The
fraction Dgoodph/Dall roughly quantifies the effects of source
crowdedness on the photometric quality. We expect that the
median sky density of GPQs is no higher than that of
GoodQSO (median(Dnew)� median(DGoodQSO)); therefore, the

lower-limit “absolute” sky density of GPQs can be computed
as

( )
( )

( )´¢
¢

D D
D

D

median

median
, 2new new

GoodQSO

new

Figure 6. (a) The W1 − W2 vs. W2 −W3 color–color diagram of GoodMockGPQ-PS1 (color-coded dots) and PS1-AllWISE point sources (black dots) in the
Galactic plane (|b| � 20°). (b) The W1 −W2 vs. W2 − W3 color–color diagram of PS1-AllWISE point sources in the Galactic plane (color-coded according to
density) and marginal probability distribution plots in the W1 − W2 and W2 −W3 axes. For panel (a), contour lines from the (two-dimensional) kernel density
estimation for the GoodMockGPQ-PS1 sample are plotted, and a reference contour line (magenta) with a density of 0.02 is specified. Quasar evolutionary tracks that
begin at z = 0.6 (due to the template coverage) and end at z = 7 with E(B − V ) = 0, 0.75, and 1.5 are displayed. The black arrow (reddening vector) indicates the
evolution direction of the source colors with increasing E(B − V ). Yellow crosses denote points on the quasar evolutionary tracks without Galactic reddening with
z = 1, L , 7. The mean color of quasars with z < 0.1 is marked with a yellow triangle. For panel (b), the same reference contour line of the GoodMockGPQ-PS1
sample from panel (a) is shown with a red dashed line; the lowest W1 −W2 value of the reference contour line is plotted as a black dashed line over the W1 − W2
marginal distribution plot. The quasar evolutionary tracks are calculated based on the template from Hernán-Caballero et al. (2016).

Figure 7. Color–color diagrams of GoodMockGPQ-PS1 and GoodMockGal-PS1 (a)–(d) and the iPSF − iKron vs. iPSF plot for the two samples (e). Orange circles
represent GoodMockGPQ-PS1 sources, while blue circles represent GoodMockGal-PS1 sources.
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where median(DGoodQSO)= 20.3 deg−2, and ( ) =¢Dmedian new
-2.9 deg 2. Figure 8 shows the sky distribution of Dall, Dgoodph,

Dgoodph/Dall, and Dnew. The estimated Dnew has a median of
20.3 deg−2 and a maximum of 66.7 deg−2.

The predicted marginal probability of GPQs to the PS1-
AllWISE sample with good photometry is Dnew/Dgoodph,
which ranges from 2× 10−4 to 0.17 with a median of
3× 10−3. The maximum value of 0.17 is not reliable because
it is located at the edges of the HEALPix map (δ∼ −30°),
where the source count in a pixel does not correspond to the
true number of sources in the sky region.

5. GPQ Candidate Selections with XGBoost

We use XGBoost (Chen & Guestrin 2016), a scalable tree
boosting system, to perform machine-learning classification for
GPQ selection. It is an implementation of the original gradient-
boosting framework (Friedman et al. 2000; Friedman 2001)
known for high efficiency and outstanding performance in
machine-learning competitions (Chen & Guestrin 2016).
Compared to traditional gradient-boosting machines, XGBoost
has made a few improvements at the algorithm level. For
example, XGBoost includes regularization terms in the
objective function to control the model complexity and
therefore can reduce overfitting and improve the model
generalization. It is optimized for sparse input data, i.e., data
with missing values. Other than the greedy algorithm by
Friedman (2001), XGBoost supports a weighted quantile
sketch algorithm that can more effectively find the optimal
split points. Moreover, system enhancements for paralleliza-
tion, tree pruning, and cache optimization have been integrated
into XGBoost. Recently, XGBoost has been applied to
astronomy and showed its capabilities in handling astronomical
problems, including identifying Galactic candidates among
unassociated sources from the Third Fermi Large Area

Telescope catalog (Acero et al. 2015; e.g., Mirabal et al.
2016), distinguishing M giants from M dwarfs for spectral
surveys (e.g., Yi et al. 2019), and selecting quasar candidates
with photometric data (e.g., Jin et al. 2019).
In order to obtain the optimal models, we use optuna (Akiba

et al. 2019), a hyperparameter optimization framework to tune
the learning hyperparameters. As has been mentioned in
Section 3.3, we transform the three-class classification problem
into two binary classification problems (stars versus extra-
galactic objects and galaxies versus quasars). Under this
setting, hyperparameters can be fine-tuned separately for the
two classification steps. After classifying the Galactic plane
sources with the two classifiers, we may use necessary
additional criteria to ensure the purity of GPQ candidates.
The classification scheme is shown in Figure 9.
A few evaluation metrics are used in the machine-learning

process: accuracy, precision, recall, F1, Matthews correlation
coefficient (MCC), and area under the precision–recall curve
(AUCPR). With true positive denoted as TP, true negative as
TN, false positive as FP, and false negative as FN, the first five
metrics are defined as

( )=
+

+ + +
accuracy

TP TN

TP TN FP FN
, 3

( )=
+

precision
TP

TP FP
, 4

( )=
+

recall
TP

TP FN
, 5

( )= ´
´
+

F 2
precision recall

precision recall
, 61

Figure 8. Sky density of all PS1-AllWISE Galactic plane sources (a) and the subset with good photometry (b), fraction of sources with good photometry in the PS1-
AllWISE sample (c), and estimated lower limit to the sky density of GPQs (d).
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The precision–recall (PR) curve can be constructed by
plotting PR pairs (operating points) that are obtained using
different thresholds on a probabilistic or other continuous-
output classifier (Boyd et al. 2013). The AUCPR can then be
calculated with numerical integration methods.

Among the six metrics, accuracy, precision, recall, and F1

are commonly used. However, the accuracy and F1 metrics fail
to measure the classification performance correctly under class-
imbalanced situations because they will be heavily biased
toward the majority class. For example, given a sample with 95
from the negative class and five from the positive class, simply
classifying all instances as negative produces accuracy= 0.95
and F1= 0.9744. These two scores of metrics are misleading
because all of the positive instances are wrongly classified,
while the accuracy and F1 are high. The last two metrics, MCC
and AUCPR, are considered better evaluation measures in
class-imbalanced cases. The MCC takes the four confusion
matrix categories (TP, TN, FP, and FN) into account, and it is
high only if the classifier makes good predictions on both
positive and negative classes, independently of their ratios in
the overall data set (Chicco & Jurman 2020). It is also
suggested by studies that the PR curve is more informative than
the more famous receiver operator characteristic curve (first
recommended by Provost et al. 1998), especially on imbalanced
data sets (Davis & Goadrich 2006; Saito & Rehmsmeier 2015).

The AUCPR is useful as a measure of the overall performance of
the model.
A total of 13 features are chosen for the two classification

steps and the later photometric redshift regression, including 11
colors, g− r, r− i, i− z, z− y, g−W1, r−W1, i−W1,
z−W1, y−W1, W1−W2, and W2−W3, and two morpho-
logical features, i− iKron and z− zKron. As has been discussed
in Section 4.2, using a set of PS1 colors (g− r, r− i, i− z, and
z− y) can help reduce the overlap between clusters of quasars
and stellar loci on two-dimensional diagrams. Quasars have
redder W1−W2 and W2−W3 colors than stars and galaxies,
which makes these two colors good features for quasar
selection. Jin et al. (2019) showed that three PS1-AllWISE
colors (i.e., i−W1, y−W1, and z−W2) can be used to
efficiently distinguish quasars from stars and improve the
performance of XGBoost classification. We construct similar
colors as features by combining all PS1 bands and W1 (i.e.,
g−W1, r−W1, i−W1, z−W1, and y−W1) because W1 is
the most sensitive of the AllWISE bands. These five new colors
provide rough optical SEDs for the objects and can characterize
different objects with broader wavelength ranges than other
optical colors (e.g., g− r) do. The differences between PSF and
Kron magnitudes in the iP1 and zP1 bands (i− iKron and
z− zKron) are used as morphological features to separate point
sources (stars and quasars) from extended sources (galaxies).
We convert Vega magnitude to AB magnitude for AllWISE
data when constructing all of the features. As we do not set
constraints on W3 magnitude or W3snr (S/N in W3), some
sources may have poor or missing W3 (and W2−W3) data.
Nevertheless, the use of W2−W3 will not be a problem
because XGBoost can handle the missing values, and data with
lower S/Ns are more informative than missing values.

5.1. Binary Classification for Stars and Extragalactic Objects

In the first classification step, the input data for training and
validation consist of synthetic quasar sample TQSO, synthetic
galaxy sample TGal (see Section 4.1), and LAMOST Galactic
plane star sample TStar (Section 2.6). The input data have more
than 3 million rows. For binarization, we assign the label EXT
(extragalactic object) to all TQSO and TGal instances and keep
the label for TStar as STAR. Here we regard extragalactic
objects as the positive class and stars as the negative class.
We first apply fivefold cross-validations with optuna to find

the optimal setting of the hyperparameters that minimizes the
log loss among 500 trials. For a binary classification problem
with a true label y ä {0, 1} and a probability estimate p= Pr
(y= 1), the log loss per sample is the negative log-likelihood of
the classifier given the true label:

( ) ( ∣ ) ( )= -y p y plog_loss , log Pr 8

( ( ) ( ) ( )) ( )= - + - -y p y plog 1 log 1 . 9

Then we randomly split all of the input data into training and
validation sets according to a 4:1 ratio and calculate the scores
of the six metrics with the validation set. This 4:1 split ratio is
consistent with that of the fivefold cross-validations. The large
sample size of the input data also ensures that both the training
and validation sets have enough samples.
Some fixed parameters in our programs are objective =

binary:logistic, booster = gbtree, and tree_
method = hist. For hyperparameters that are tuned, the

Figure 9. Flowchart of GPQ selection and photometric redshift calculation.
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default values, the optimal values found by the cross-validations,
and the corresponding metric scores of these parameters are
listed in Table 2. The number of boosting rounds (num_boost_
round, aka n_estimators in the scikit-learn API of
XGBoost) is fixed to 100 and not tuned together with eta
(aka learning_rate) because the effects of increasing num_
boost_round can cancel those of decreasing eta, and
vice versa. In the training process, we need to lower the learning
rate eta and increase the num_boost_round to reduce the
generalization error. Classifier No. 1 (CLF-1) is trained using
eta= 0.02, num_boost_round= 1200 with other optimal
parameters in Table 2.

We then classify the PS1-AllWISE pointlike sources with
CLF-1. To exclude as many stars as possible, we adopt a high
threshold on pEXT (model-predicted probabilities of sources
being extragalactic) to select extragalactic candidates. Sources
with pEXT> 0.99 are labeled as EXT, and the others are labeled
as STAR and removed.

5.2. Binary Classification for Galaxies and Quasars

We use the TQSO and TGal samples as input data for training
and validation in the second classification step. Here we regard
quasars as the positive class and galaxies as the negative class.

The same processes of parameter tuning and training as for
CLF-1 are applied to build CLF-2. We keep some parameters
unchanged: objective= binary:logistic, booster=
gbtree, and tree_method = hist. For hyperparameters that
are tuned, the default values, the optimal values found by the
cross-validations, and the corresponding metric scores of these
parameters are listed in Table 3. The CLF-2 is trained using
eta= 0.02, num_boost_round= 1500 with other optimal
parameters in Table 3.

The optimal scores of the six metrics in Table 3 are all lower
than those in Table 2, indicating that the quasar–galaxy
classification “hardness” is higher than that of the star–
extragalactic problem. Here we also use a high threshold of
probability to select the sources of our target class. We classify
the sources labeled as EXT with CLF-2. Sources with
pQSO> 0.95 are kept as GPQ candidates, where pQSO is the

probability of a source being a quasar predicted by the
XGBoost model.

5.3. Additional Cut Based on Gaia Proper Motion to Remove
Stellar Contaminants

In the first classification process, we classify all PS1-
AllWISE pointlike sources as stars and extragalactic objects.
We ignore stars in the second classification step. Although the
metrics of CLF-1 are high (Table 2), some stars can be
misclassified as extragalactic objects and then classified as
either quasars or galaxies. Faint stars are more likely to be
misclassified than bright stars because the stars in the training
sample (TStar) are biased toward the bright end. When using
optical and near-IR colors for candidate selection, white dwarfs
are major contaminants for low-redshift quasars, and M/L/T
dwarfs are typical contaminants for high-redshift quasars (e.g.,
Kirkpatrick et al. 1997; Vennes et al. 2002; Chiu et al. 2006).
In the mid-IR regime, potential stellar contaminants for quasars
are YSOs, asymptotic giant branch (AGB) stars, and planetary
nebulae (PNe; Kozłowski & Kochanek 2009; Koenig &
Leisawitz 2014; Assef et al. 2018).
The YSOs are stars at the early stages of evolution and are

often divided into four subclasses (Lada 1987; Andre et al.
1993): class I, class II, flat-spectrum, and class III. Among
them, class II and flat-spectrum YSOs are the most likely
contaminants, since they have optical and mid-IR SEDs similar
to those of quasars. Since we require both optical and mid-IR
detections for classification, optically faint class I YSOs are
eliminated in the first place. As has been studied by Koenig &
Leisawitz (2014), class III YSOs are clustered around
W2−W3= 0 and W1−W2= 0, while class I and II and
flat-spectrum YSOs occupy the region with approximately
W1−W2> 0.25 and 1.0<W2−W3< 4.5 (see their Figure
5). The latter YSO region is overlapped with the quasar region
shown in Figure 6; therefore, the contamination should be
taken care of.
The AGB stars are evolved stars with low temperatures and

high luminosities. They are surrounded by circumstellar
envelopes, and IR excess exists in their broad SEDs. According
to Figure 5 from Koenig & Leisawitz (2014), only a minority

Table 2
Default and Optimal Hyperparameter Settings for CLF-1 (Star vs. Extragalactic

Object Classification)

Hyperparameter Default Optimal

eta (learning_rate) 0.3 0.3
lambda (reg_lambda) 1 2.32
alpha (reg_alpha) 0 1.13
max_depth 6 9
gamma (min_split_loss) 0 0.60
grow_policy depthwise depthwise
min_child_weight 1 1
subsample 1 0.96
colsample_bytree 1 0.92
max_delta_step 0 3

Accuracy 0.9993 0.9995
Precision+ 0.9993 0.9995
Recall+ 0.9995 0.9996
F1 0.9994 0.9996
MCC 0.9985 0.9990
AUCPR 0.9992 0.9995

Table 3
Default and Optimal Hyperparameter Settings for CLF-2 (Quasar vs. Galaxy

Classification)

Hyperparameter Default Optimal

eta (learning_rate) 0.3 0.2
lambda (reg_lambda) 1 2.32
alpha (reg_alpha) 0 1.10
max_depth 6 9
gamma (min_split_loss) 0 0.81
grow_policy depthwise depthwise
min_child_weight 1 2
subsample 1 0.95
colsample_bytree 1 0.86
max_delta_step 0 6

Accuracy 0.9969 0.9974
Precision+ 0.9894 0.9905
Recall+ 0.9894 0.9918
F1 0.9894 0.9912
MCC 0.9875 0.9896
AUCPR 0.9938 0.9951

12

The Astrophysical Journal Supplement Series, 254:6 (20pp), 2021 May Fu et al.



of AGB stars actually overlap with class I and II and flat-
spectrum YSOs (and thus quasars) in the W1−W2 versus
W2−W3 diagram. Therefore, we expect that the contamina-
tion from AGB stars is less than that from YSOs.

The PNe have a series of narrow emission lines, as well as IR
excess. Known PNe can be later removed from the GPQ
candidate sample by cross-matching with the Simbad database
(Wenger et al. 2000).

In order to remove stellar contaminants such as white
dwarfs, M/L/T dwarfs, YSOs, and AGB stars from GPQ
candidates, we apply an additional cut based on Gaia proper
motion, because the proper-motion distribution of quasars is
different from that of Milky Way stars. Although quasars
should have negligible transverse motions, their nonzero proper
motions are measured by Gaia due to various effects, such as
the photocenter variability of quasars (see Bachchan et al.
2016, and references therein). In addition, proper motions with
large uncertainties are not reliable. Therefore, we need a
probabilistic cut instead of a cut on the total proper motion. We
define the probability density of zero proper motion ( fPM0) of a
source based on the bivariate normal distribution of proper-
motion measurements of the source as
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where x= pmra, y= pmdec, and ρ= pmra_pmdec_corr (cor-
relation coefficient between pmra and pmdec) are obtained
from the Gaia DR2 catalog, while σx and σy are the true
external proper-motion uncertainties calculated with the
method suggested by Lindegren et al. (2018a, 2018b). The
external proper-motion uncertainty can be expressed as

( )s s s= +k i sext
2 2 2 1

2 , where σext can be σx or σy, k= 1.08 is a
multiplicative factor, σi is the catalog uncertainty (pmra_error
or pmdec_error), and σs is the systematic error. For bright
sources (G< 13), σs= 0.032 mas yr−1; for faint sources
(G> 13), σs= 0.066 mas yr−1. Under the same uncertainty
level, sources with smaller proper motions will have higher
fPM0 by definition.

We take the logarithm of fPM0 for better comparison between
samples. Figure 10 shows the distributions of the ( )flog PM0 of
stars, galaxies, and quasars used in this study. For stellar
samples, in addition to TStar (LAMOST Galactic plane star
sample), a subsample of the SDSS Stripe 82 Standard Star
Catalog (hereafter S82 star; Ivezić et al. 2007) that meets the
same constraints in Sections 2.1 and 2.2 is also included for
comparison. We choose a ( ) -flog 4PM0 cut that excludes
94.1% of both LAMOST Galactic plane stars and S82 stars,
while it retains 99.8% of the quasars. Nevertheless, faint stars
can be major contaminants even with such a strict cut
on ( )flog PM0 .

We calculate the ( )flog PM0 for GPQ candidates after cross-
matching them with Gaia DR2. For candidates without
Gaia DR2 proper-motion records, we assign a default value
of 99 for ( )flog PM0 . Sources with ( ) -flog 4PM0 are kept as
reliable GPQ candidates.

6. Photometric Redshift Estimation for GPQ Candidates

Measuring redshifts is an important step for quasar surveys.
For quasar candidates, photometric redshift (photo-z) estima-
tion is key to follow-up studies. Many different approaches
have been proposed for calculating the photo-zs of quasars,
including quasar template fitting (e.g., Budavári et al. 2001;
Babbedge et al. 2004; Salvato et al. 2009), the empirical color–
redshift relation (e.g., Richards et al. 2001; Weinstein et al.
2004; Wu et al. 2004, 2012; Wu & Jia 2010), machine learning
(e.g., Yèche et al. 2010; Laurino et al. 2011; Brescia et al.
2013; Zhang et al. 2013; Pasquet-Itam & Pasquet 2018), the
XDQSOz method (Bovy et al. 2012), and the Skew-QSO
method (Yang et al. 2017). As the photo-z estimation problem
can be well described by the regression problem in machine
learning, we also use XGBoost to train the regression model
and predict photo-zs for our reliable GPQ candidates.
To build the training and validation sets, we randomly split

the dereddened GoodQSO sample with a ratio of 4:1. Our
application set (reliable GPQ candidates) is also dereddened.
The same 13 features as those in Section 5 are used for photo-z
regression: g− r, r− i, i− z, z− y, g−W1, r−W1, i−W1,
z−W1, y−W1, W1−W2, W2−W3, i− iKron, and z− zKron.
The morphological features i− iKron and z− zKron are included
because they may help distinguish quasars at different
cosmological distances. To obtain the optimal model, we also
tune the parameters with fivefold cross-validations using
optuna.
The performance of the XGBoost photo-z regression model

on the validation set can be examined in the zphot− zspec
(photometric redshift versus spectral redshift) plot (Figure 11)
or with two quantities: the rms error (RMSE) and photo-z
accuracy. For a validation set with a sample size n, the

RMSE is ( )å= -= z z nRMSE
i

n

1 phot spec
2 . In our validation

set with a sample size of 57,855, the RMSE is 0.35. The
photo-z accuracy R0.1 is defined as the fraction of quasars
with |Δz|� 0.1, where |Δz|= |zspec− zphot|/(1+ zspec). Our
XGBoost regression model yields a photo-z accuracy of 74%
on the validation set, which is comparable to that of Yang et al.
(2017) on PS1 and WISE data (79%). Yang et al. (2017)
adopted a multivariate Skew-t model and prior probabilities
from the quasar luminosity function to achieve the high photo-z
accuracy. Figure 12 shows the photo-z accuracy R0.1 as a
function of spectral redshift (left panel) and dereddened
iP1-band magnitude (right panel). Here R0.1 has maximum
values at z≈ 2.3 and 4 and reaches a minimum at z≈ 3. Most
z≈ 3 quasars have underestimated photometric redshifts (see
Figure 11) due to a degeneracy of broadband photometry in
response to quasar SEDs at different redshifts. The strong Lyα
emission line enters the gP1 band at z≈ 2.4 and moves into the
rP1 band at z≈ 3.5, which leads to a large excess in gP1
magnitudes and hence similar PS1 colors of quasars within
2.4 z 3.5. This kind of degeneracy can be alleviated if
SDSS u-band data are available to characterize the Lyman-limit
systems (see Section 4 of Yang et al. 2017). The photo-z
accuracy is improved at z 3.5 because the Lyman limit enters
the gP1 band. The R0.1 also drops at low redshift (z< 1) and
both the bright and faint ends because the training sample is
biased toward intermediate redshifts and magnitudes.
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7. The GPQ Candidate Catalog

7.1. Validation of the GPQ Candidates with Simbad, Milliquas,
and SDSS DR16Q

With our transfer-learning framework and the aforemen-
tioned additional selection criteria, we obtain a reliable GPQ
candidate sample with 161,532 sources from PS1 and
AllWISE. We cross-match the GPQ candidates with the
Simbad database (Wenger et al. 2000) and find 2786 matches.
The object types and summary are shown in Table 4.

We categorize all matched sources into four groups: AGNs/
QSOs, stars (including PNe and PN candidates), galaxies, and
other types of objects. Among all of the matches, 53.98%
(1504) are recorded as AGNs/QSOs (including candidates),
8.97% (250) are recorded as stars (including candidates),
4.02% (112) are recorded as galaxies, and 33.02% (920) are
other types of objects labeled according to their detection
properties (e.g., wavelength). Those other types of objects have
higher probabilities of being AGNs/QSOs than stars, as most
(728+27) of them are radio sources and 64 are X-ray sources

(see Table 4). For the 4.02% of sources labeled as galaxies, a
number of them may also host AGNs/QSOs, as we have
applied careful selection criteria to remove possible galaxy
contaminants. Among the 250 sources labeled as stars, 40 are
candidates, and the other 210 are known stars. Of the known
stars, 101 were once selected as QSO candidates using SDSS
photometry and then identified as stars by the 2dF-SDSS LRG
and QSO Survey (Croom et al. 2009). From these analyses, we
can conclude that the purity of our GPQ candidates on the
small subset of 2786 Simbad matches can be as high as ∼90%.
The true purity may vary at different locations in the Galactic
plane.
As another test of stellar contamination, we cross-match our

GPQ candidates with the LAMOST Galactic plane star sample.
This match identifies 29 LAMOST stars, none of which are
recorded in Simbad. Therefore, the total number of known stars
in the GPQ candidates is 239.
We also examine the fraction of known GPQs that can be

recovered with our candidate table. The known GPQ sample is
MLQSUB with 1853 sources, which is retrieved from the
Milliquas catalog and described in Section 2.7. The MLQSUB
is selected with the same constraints as those on our application
PS1-AllWISE data to get a consistent analysis result. Cross-
matching MLQSUB with our GPQ candidates results in 1763
matches, meaning that 95.14% of GPQs from Milliquas can be
selected with our methods under the same quality constraints
on the photometric data. The recent sixteenth data release of the
SDSS Quasar Catalog (DR16Q; Lyke et al. 2020) has a total
of 750,414 sources, of which 3737 sources are located at
|b|< 20°. Only 1320 of these SDSS GPQs meet the
photometric quality constraints in Sections 2.1 and 2.2.
Cross-matching our GPQ candidates with SDSS DR16Q gives
1292 matches, which corresponds to a recall rate of 97.88%
under the same photometric quality constraints or 34.57% for
the whole identified sample. The overall completeness of the
sample of candidates is mainly limited by the photometric
quality constraints.

7.2. Description of the GPQ Candidate Catalog

We remove 239 known stars (see Section 7.1) from our GPQ
candidate sample. We then matched the remaining GPQ
candidates by coordinates with TOPCAT internally and found
347 close pairs within 0 2. These pairs are very likely
duplicated sources, because the PS1 survey cannot resolve two
sources within an angular distance of 0 2. The median image
quality for the PS1 3π survey is FWHM = (1 31, 1 19, 1 11,
1 07, 1 02) for (grizyP1) (Magnier et al. 2020). Therefore, we
only keep one source for each close pair and obtain the final
GPQ candidate sample with 160,946 sources. The GPQ
candidate catalog is compiled based on this sample with
photometric data from PS1 DR1 and AllWISE and astrometric
data from Gaia DR2. The descriptions for the catalog are
displayed in Table 5.
The sky density of sources from the GPQ candidate catalog

is shown in Figure 13. In general, the sky distribution of the
GPQ candidates is consistent with the prediction in Section 4.3.
The highest sky density of the candidates is 72.7 deg−2, which
is slightly higher than the estimation (66.7 deg−2). The median
density is 16.7 deg−2, which is comparable but lower than the
estimated value (or the median density of GoodQSO). As can
be seen from Figure 13, the sky densities of GPQ candidates at
|b| 10° are lower than those of the estimation in Figure 8(d),

Figure 10. Histograms of the ( )flog PM0 of TStar (LAMOST Galactic plane star),
GoodGal (from SDSS galaxy), GoodQSO (from SDSS DR14Q), and sources
from the S82 star. Because fPM0 is the probability density, which can be greater
than 1 (the integral of the probability density function over the entire space is
equal to 1), ( )flog PM0 can have positive values.

Figure 11. Photometric redshift obtained with the XGBoost regression model
against the spectral redshift of the dereddened validation set with 57,855
quasars. The red dashed line denotes zphot = zspec, and the blue dotted lines
mark the margin within one RMSE from the red dashed line.
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which indicates that the modeling process overestimates the
sky density of GPQs at lower Galactic latitudes. The region
with δ −30° (240° l  360°) is blank because it is not
covered by the PS1 3π survey.

The distributions of the dereddened iP1 magnitudes and
photometric redshifts of our GPQ candidates are displayed in
Figure 14(a). The lowest and highest photometric redshifts are
zphot= 0.016 and 4.777, respectively. Taking into account the
uncertainties in the photo-z estimations, the actual highest
redshift of the GPQs can be up to 5. Five peaks appear in the
histogram of photometric redshift (Figure 14(a)) at zphot≈ (0.8,
1.2, 1.7, 2.1, 2.4), which are caused by the selection effects and
sample bias of the training set. Quasars with these redshifts
have higher chances of being selected with PS1 photometry: (i)
when z≈ 0.8, the Mg II emission line enters the gP1 band; (ii)
when z≈ 1.2, Mg II enters the rP1 band; (iii) when z≈ 1.7,
C III] enters the gP1 band and Mg II enters the iP1 band; (iv)
when z≈ 2.1, both the Si IV and C IV lines enter the gP1 band
and C III] enters the rP1 band; and (v) when z≈ 2.4, Lyα and
Si IV enter the gP1 band.

The distributions of the dereddened iP1 magnitudes and
spectroscopic redshifts of the GoodQSO sample from SDSS
DR14Q are also shown in Figure 14(b) for comparison. The
GoodQSO sample and the sample of GPQ candidates have
similar redshift distributions, with some subtle differences. The
magnitude distributions are also similar to each other, except
that GoodQSO has a larger fraction of bright sources (iP1< 19)
than the GPQ candidates. Such differences in both redshift and
magnitude distributions of these two samples are mainly due to
their different target selection strategies. Our GPQ candidates

are selected from a single parent sample, while SDSS DR14Q
includes many quasar samples in various redshift and
magnitude ranges (see Section 2.2 of Pâris et al. 2018).
The color–color properties of sources from the GPQ

candidate catalog are shown in Figure 15. In general, GPQ
candidates have color–color distributions that are well matched
to those of GoodMockQSO-PS1 (see Figures 5 and 6). The
unimodal structures seen from both AllWISE and PS1 colors
imply a low level of contamination from stars and galaxies.
However, contamination from stars can be recognized from the
i− z versus r− i diagram, where some sources are concen-
trated along the stellar locus (see the slightly contaminated
region “SC” in Figure 15(c)). We apply no cut on the SC region
because it only contains 7892 sources (4.90% of the whole
catalog), and any cut is likely to also remove reddened quasars
(see Figure 5).

8. Summary and Conclusions

We present a transfer-learning framework for quasar
selection and its application to finding GPQs. We construct
mock samples of quasars and galaxies behind the Galactic
plane by assigning new locations and extinction values to the
extinction-corrected high-b SDSS extragalactic sources. We
use PS1 limiting magnitudes to select good mock sources and
compare them with high-b sources in color–color spaces. We
show that the covariate change of source colors is significant
from high-b regions to the Galactic plane. We synthesize
training and validation data for machine learning with (i) good
mock samples, (ii) SDSS extragalactic sources that do not have

Table 4
Matching Results of GPQ Candidates and the Simbad Database

AGN/QSO Number Star Number Galaxy Number Other Types Number

QSO 1121 Star 175 Galaxy 106 Radio source 728
AGN candidate 150 YSO candidate 22 Radio galaxy 3 IR source 77
BL Lac object 143 YSO 13 Brightest galaxy in a cluster 2 X-ray source 64
Seyfert 1 galaxy 38 Cataclysmic binary candidate 7 Cluster of galaxies 1 Centimetric radio source 27
AGN 31 PN 5 Blue object 22
Other subclasses 21 Other subclasses 28 Far-IR source (λ � 30 μm) 2
Total 1504 Total 250 Total 112 Total 920
Fraction 53.98% Fraction 8.97% Fraction 4.02% Fraction 33.02%

Figure 12. Photo-z accuracy R0.1 (the fraction of quasars with |Δz| � 0.1, where |Δz| = |zspec − zphot|/(1 + zspec)) as a function of redshift (left panel) and magnitude
(dereddened; right panel).
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Table 5
Contents of the GPQ Candidate Catalog

Column Units Label Explanations

1 L Designation Catalog designation hhmmss.ss+ddmmss.s (J2000) based on PS1 coordinates

2 deg ra PS1 R.A. in decimal degrees (J2000) (weighted mean) at mean epoch

3 deg dec PS1 decl. in decimal degrees (J2000) (weighted mean) at mean epoch

4 deg l Galactic longitude in decimal degrees

5 deg b Galactic latitude in decimal degrees

6 L photoz Photometric redshift predicted with XGBoost regressor

7 L p_star Probability of the object being a star, predicted by the first XGBoost classifier, aka pstar (p_star+p_ext = 1)
8 L p_ext Probability of the object being an extragalactic object, predicted by the first XGBoost classifier, aka pext (p_star+p_ext = 1)
9 L p2_gal Probability of the object being a galaxy, predicted by the second XGBoost classifier, aka pgal (p2_gal+p2_qso = 1)
10 L p2_qso Probability of the object being a quasar, predicted by the second XGBoost classifier, aka pQSO (p2_gal+p2_qso = 1)
11 L fpm0 Probability density of zero proper motion ( fPM0) of the source
12 L log_fpm0 Logarithm of fpm0 ( ( )flog PM0 )

13 mag ebv Line-of-sight E(B − V ) given by the Planck14 dust map

14 L PS_objID PS1 unique object identifier

15 mag gmag Mean PSF AB magnitude from PS1 g-filter detections

16 mag e_gmag Error in gmag

17 mag gKmag Mean Kron AB magnitude from PS1 g-filter detections

18 mag e_gKmag Error in gKmag

19 mag rmag Mean PSF AB magnitude from PS1 r-filter detections

20 mag e_rmag Error in rmag

21 mag rKmag Mean Kron AB magnitude from PS1 r-filter detections

22 mag e_rKmag Error in rKmag

23 mag imag Mean PSF AB magnitude from PS1 i-filter detections
24 mag e_imag Error in imag

25 mag iKmag Mean Kron AB magnitude from PS1 i-filter detections

26 mag e_iKmag Error in iKmag

27 mag zmag Mean PSF AB magnitude from PS1 z-filter detections

28 mag e_zmag Error in zmag

29 mag zKmag Mean Kron AB magnitude from PS1 z-filter detections

30 mag e_zKmag Error in zKmag

31 mag ymag Mean PSF AB magnitude from PS1 y-filter detections

32 mag e_ymag Error in ymag

33 mag yKmag Mean Kron AB magnitude from PS1 y-filter detections

34 mag e_yKmag Error in yKmag
35 L AllWISE_ID AllWISE unique source ID

36 mag W1mag W1 (Vega) magnitude (3.35 μm)
37 mag e_W1mag Mean error on W1 magnitude

38 mag W2mag W2 (Vega) magnitude (4.6 μm)
39 mag e_W2mag Mean error on W2 magnitude

40 mag W3mag W3 (Vega) magnitude (11.6 μm)
41 mag e_W3mag Mean error on W3 magnitude

42 mag W4mag W4 (Vega) magnitude (22.1 μm)
43 mag e_W4mag Mean error on W4 magnitude

44 mag Jmag 2MASS J (Vega) magnitude (1.25 μm)
45 mag e_Jmag Mean error on J magnitude

46 mag Hmag 2MASS H (Vega) magnitude (1.65 μm)
47 mag e_Hmag Mean error on H magnitude

48 mag Kmag 2MASS Ks (Vega) magnitude (2.17 μm)
49 mag e_Kmag Mean error on Ks magnitude

50 L Gaia_source_id Gaia DR2 unique source identifier

51 mas parallax Gaia DR2 parallax

52 mas parallax_error Standard error of parallax

53 mas yr−1 pmra Gaia DR2 proper motion in R.A. direction

54 mas yr−1 pmra_error Standard error of pmra

55 mas yr−1 pmdec Gaia DR2 proper motion in decl. direction

56 mas yr−1 pmdec_error Standard error of pmdec

57 L pmdec_pmdec_corr Correlation between pmra and pmdec

58 mas yr−1 pmra_error_ext True external uncertainty of pmra
59 mas yr−1 pmdec_error_ext True external uncertainty of pmdec

60 L sb_main_id Main identifier for an object in Simbad database

61 L sb_main_type Main object type for an object in Simbad database

62 L sb_redshift Redshift of an object recorded in Simbad database

(This table is available in its entirety in FITS format.)
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counterparts in the good mock samples, and (iii) a real
LAMOST Galactic plane star sample.

We apply the XGBoost algorithm for machine learning in
this study. To help reduce the effects of class imbalance and
class-balance change, we turn the three-class classification task
(star, galaxy, and quasar) into two binary classification
problems. A total of 13 features are used for the two
classification steps: g− r, r− i, i− z, z− y, g−W1, r−W1,
i−W1, z−W1, y−W1, W1−W2, W2−W3, i− iKron, and
z− zKron. In order to remove star and galaxy contaminants,
we use high thresholds of model-predicted probabilities
(pEXT> 0.99 and pQSO> 0.95) to select extragalactic and
quasar candidates. We perform an additional cut on the
probability density of zero proper motion ( ( ) -flog 4PM0 )
based on Gaia DR2 data to further reduce stellar contamination.
Using the extinction-corrected SDSS DR14Q sources, we build
the photometric redshift estimator with RMSE= 0.35 on the
validation set.

Our GPQ candidate sample is validated with the Simbad
database and Milliquas catalog. The purity of quasars is ∼90%
on the Simbad matches. Under our constraints for good PS1
and AllWISE photometry, 95.14% of the GPQs in the
Milliquas catalog and 97.88% of the GPQs from SDSS
DR16Q can be recalled with our GPQ candidate sample. The
photometric quality constraints ensure the reliability of the
candidates but at the cost of lower overall completeness of the
candidate sample. The sky density of GPQ candidates is
consistent with the estimation based on the mock GPQ catalog.
The median marginal probability of GPQs to the PS1-AllWISE

sample with good photometry is ∼10−3, and the lowest
marginal probability is ∼10−4. We compile the GPQ candidate
catalog after removing known stars in Simbad and LAMOST
and some duplicated sources. The GPQ candidate catalog
consists of 60,946 sources. In addition to our machine-learning
predictions, we include PS1 and AllWISE photometry, as well
as Gaia DR2 astrometry in the table. The GPQ candidate
sample has broad redshift coverage (0< z 5), indicating that
our selection methods can be used on wide redshift ranges.
The colors of the GPQ candidates agree well with those of

the mock GPQ catalog, which also indicates a high purity of
the candidates even though the marginal probability is low.
Contamination from stars and galaxies still exists in the GPQ
candidate sample but at a low level. Because most stars in the
training sample (TStar) are bright, identifying and removing
faint stars can be challenging for the XGBoost classification
model (CLF-1). Using colors instead of magnitudes as features
helps to lessen the effects of such training sample bias. The
strict ( ) -flog 4PM0 cut can additionally remove most stellar
contaminants. Galaxies overlap heavily with quasars on PS1
color–color diagrams and show a similar ( )flog PM0 distribution
with quasars. The use of AllWISE colors (W1−W2 and
W2−W3) and morphological separators (i− iKron and
z− zKron) largely aids the galaxy–quasar classification. For
future GPQ candidate selections, we expect to improve the
machine-learning performance by compiling a Galactic plane
star training sample with more stars in the faint end.
We have been carrying out a series of spectroscopic

identifications of GPQ candidates since 2018 using optical

Figure 13. Sky density plot of GPQ candidates in Galactic coordinates.

Figure 14. (a) Dereddened iP1 magnitude and photometric redshift distribution of GPQ candidates. (b) Dereddened iP1 magnitude and redshift distribution of the
GoodQSO sample. The iP1 magnitude is dereddened according to the Planck14 dust map.
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telescopes, including the 2 m telescopes based at Lijiang and
Xinglong in China and Siding Spring in Australia and the
200 inch Hale Telescope in the US. The success rate of
identifying new GPQs is ∼90% in our spectroscopic campaign,
which is consistent with the estimated reliability of the GPQ
candidate catalog. We have also been exploring the LAMOST
spectral data to find new GPQs. All of these efforts have
yielded promising results that will be presented in the next
paper of this series.
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